Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.097
Filtrar
1.
Front Immunol ; 15: 1337489, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566988

RESUMO

Introduction: Chimeric antigen receptor natural killer (CAR-NK) cells have been found to be successful in treating hematologic malignancies and present potential for usage in solid tumors. Methods: In this study, we created CD276-targeted CAR-expressing NK cells from pluripotent stem cells (iPSC CD276-targeted CAR-NK cells) and evaluated their cytotoxicity against esophageal squamous cell carcinoma (ESCC) using patient-specific organoid (PSO) models comprising of both CD276-positive and CD276-negative adjacent epithelium PSO models (normal control PSO, NC PSO) as well as primary culture of ESCC cell models. In addition, in vitro and in vivo models such as KYSE-150 were also examined. iPSC NK cells and NK-free media were used as the CAR-free and NK-free controls, respectively. Results: The positive CD276 staining was specifically detected on the ESCC membrane in 51.43% (54/105) of the patients of all stages, and in 51.35% (38/74) of stages III and IV. The iPS CD276-targeted CAR-NK cells, comparing with the iPS NK cells and the NK-free medium, exhibited specific and significant cytotoxic activity against CD276-positive ESCC PSO rather than CD276-negative NC PSO, and exhibited significant cytotoxicity against CD276-expressing cultured ESCC cells, as well as against CD276-expressing KYSE-150 in vitro and in BNDG mouse xenograft. Discussion: The efficacy of the iPSC CD276-targeted CAR-NK cells demonstrated by their successful treatment of CD276-expressing ESCC in a multitude of pre-clinical models implied that they hold tremendous therapeutic potential for treating patients with CD276-expressing ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Células-Tronco Pluripotentes Induzidas , Receptores de Antígenos Quiméricos , Humanos , Animais , Camundongos , Carcinoma de Células Escamosas do Esôfago/terapia , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/metabolismo , Células Matadoras Naturais , Antígenos B7/metabolismo
2.
J Clin Invest ; 134(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557496

RESUMO

Programmed cell death protein 1 (PD-1) is an immune checkpoint marker commonly expressed on memory T cells and enriched in latently HIV-infected CD4+ T cells. We engineered an anti-PD-1 chimeric antigen receptor (CAR) to assess the impact of PD-1 depletion on viral reservoirs and rebound dynamics in SIVmac239-infected rhesus macaques (RMs). Adoptive transfer of anti-PD-1 CAR T cells was done in 2 SIV-naive and 4 SIV-infected RMs on antiretroviral therapy (ART). In 3 of 6 RMs, anti-PD-1 CAR T cells expanded and persisted for up to 100 days concomitant with the depletion of PD-1+ memory T cells in blood and tissues, including lymph node CD4+ follicular helper T (TFH) cells. Loss of TFH cells was associated with depletion of detectable SIV RNA from the germinal center (GC). However, following CAR T infusion and ART interruption, there was a marked increase in SIV replication in extrafollicular portions of lymph nodes, a 2-log higher plasma viremia relative to controls, and accelerated disease progression associated with the depletion of CD8+ memory T cells. These data indicate anti-PD-1 CAR T cells depleted PD-1+ T cells, including GC TFH cells, and eradicated SIV from this immunological sanctuary.


Assuntos
Linfócitos T CD4-Positivos , Receptores de Antígenos Quiméricos , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Linfócitos T CD4-Positivos/imunologia , Centro Germinativo/imunologia , Infecções por HIV/terapia , Macaca mulatta/metabolismo , Receptor de Morte Celular Programada 1 , Receptores de Antígenos Quiméricos/genética , Síndrome de Imunodeficiência Adquirida dos Símios/terapia
3.
Front Immunol ; 15: 1371345, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558810

RESUMO

Disialoganglioside GD2 is a promising target for immunotherapy with expression primarily restricted to neuroectodermal and epithelial tumor cells. Although its role in the maintenance and repair of neural tissue is well-established, its functions during normal organism development remain understudied. Meanwhile, studies have shown that GD2 plays an important role in tumorigenesis. Its functions include proliferation, invasion, motility, and metastasis, and its high expression and ability to transform the tumor microenvironment may be associated with a malignant phenotype. Structurally, GD2 is a glycosphingolipid that is stably expressed on the surface of tumor cells, making it a suitable candidate for targeting by antibodies or chimeric antigen receptors. Based on mouse monoclonal antibodies, chimeric and humanized antibodies and their combinations with cytokines, toxins, drugs, radionuclides, nanoparticles as well as chimeric antigen receptor have been developed. Furthermore, vaccines and photoimmunotherapy are being used to treat GD2-positive tumors, and GD2 aptamers can be used for targeting. In the field of cell therapy, allogeneic immunocompetent cells are also being utilized to enhance GD2 therapy. Efforts are currently being made to optimize the chimeric antigen receptor by modifying its design or by transducing not only αß T cells, but also γδ T cells, NK cells, NKT cells, and macrophages. In addition, immunotherapy can combine both diagnostic and therapeutic methods, allowing for early detection of disease and minimal residual disease. This review discusses each immunotherapy method and strategy, its advantages and disadvantages, and highlights future directions for GD2 therapy.


Assuntos
Células T Matadoras Naturais , Neuroblastoma , Receptores de Antígenos Quiméricos , Animais , Camundongos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/uso terapêutico , Neuroblastoma/patologia , Imunoterapia/métodos , Células Matadoras Naturais/metabolismo , Microambiente Tumoral
4.
Front Immunol ; 15: 1362133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558812

RESUMO

Chimeric antigen receptor (CAR) -T cell therapy has achieved tremendous efficacy in the treatment of hematologic malignancies and represents a promising treatment regimen for cancer. Despite the striking response in patients with hematologic malignancies, most patients with solid tumors treated with CAR-T cells have a low response rate and experience major adverse effects, which indicates the need for biomarkers that can predict and improve clinical outcomes with future CAR-T cell treatments. Recently, the role of the gut microbiota in cancer therapy has been established, and growing evidence has suggested that gut microbiota signatures may be harnessed to personally predict therapeutic response or adverse effects in optimizing CAR-T cell therapy. In this review, we discuss current understanding of CAR-T cell therapy and the gut microbiota, and the interplay between the gut microbiota and CAR-T cell therapy. Above all, we highlight potential strategies and challenges in harnessing the gut microbiota as a predictor and modifier of CAR-T cell therapy efficacy while attenuating toxicity.


Assuntos
Microbioma Gastrointestinal , Neoplasias Hematológicas , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T , Neoplasias/terapia , Neoplasias Hematológicas/terapia , Terapia Baseada em Transplante de Células e Tecidos
5.
Harefuah ; 163(4): 236-243, 2024 Apr.
Artigo em Hebraico | MEDLINE | ID: mdl-38616634

RESUMO

INTRODUCTION: Using immunotherapy to fight cancer, and specifically, the use of engineered T-cells expressing a chimeric receptor against an antigen found on malignant cells (chimeric antigen receptor, CAR-T cells) constitutes a significant breakthrough in the treatment of the disease. In recent years, several CAR-T therapies have been approved in Europe and the USA, and some are already approved and funded through the national health basket in Israel, for the indications of diffuse large B-cell lymphoma, mantle cell lymphoma and B-cell acute lymphoblastic leukemia, after the failure of at least two lines of treatment. The treatment with CAR-T cells achieves prolonged remissions and even long-term cure of patients who had a very poor prognosis. However, the treatment involves significant side effects, and requires specific expertise in the management of patients both during the period of preparation for cell transplantation, and following the treatment. During the immediate post-infusion period, the most common adverse reactions are cytokine release syndrome (CRS) which stems from the activation of the immune system, and neurological toxicity that can accompany CRS. These effects require close monitoring, grading their severity, and providing anti-cytokine therapy or steroid therapy until control of symptoms is achieved. Later effects can be persistent cytopenias, immune over-activation, and prolonged immune deficiency. Treatments for additional indications and new CAR-T constructs are being developed and will allow more effective and safer treatment. This article summarizes the principles for CAR-T administration that, as currently provided in Israel, include the short- and long-term follow-up of the patients.


Assuntos
Neoplasias Hematológicas , Receptores de Antígenos Quiméricos , Medicina Transfusional , Humanos , Adulto , Israel , Linfócitos B , Neoplasias Hematológicas/terapia
6.
Zhonghua Xue Ye Xue Za Zhi ; 45(2): 105-108, 2024 Feb 14.
Artigo em Chinês | MEDLINE | ID: mdl-38604784

RESUMO

Hematopoietic stem cell transplantation provides an effective cure for various hematological diseases, especially malignant hematological diseases, its treatment system has been continuously optimized, the source of donors has been expanding, the indications have been expanding, and the therapeutic effect has also made breakthroughs to a certain extent. At present, the status of hematopoietic stem cell transplantation technology in most hematological diseases is still unshakable, but the recurrence of the primary disease and complications related to hematopoietic stem cell transplantation are still two major clinical challenges that affect the long-term survival and quality of life of patients. Cell therapy represented by chimeric antigen receptor T (CAR-T) has made breakthrough progress in the treatment of refractory/recurrent B-cell malignancies. Compared with traditional drugs, cell therapy has unique in vivo metabolic characteristics, relying on immune specific recognition and the repair ability of stem cells. It is currently emerging in the treatment of blood tumors and the management of transplant complications. Multiple clinical studies have preliminarily demonstrated a new diagnostic and therapeutic model combining cell therapy with hematopoietic stem cell transplantation.


Assuntos
Doenças Hematológicas , Transplante de Células-Tronco Hematopoéticas , Receptores de Antígenos Quiméricos , Humanos , Qualidade de Vida , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Terapia Baseada em Transplante de Células e Tecidos , Imunoterapia Adotiva
7.
Front Immunol ; 15: 1378944, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558801

RESUMO

Chimeric antigen receptor (CAR) T cell therapy holds enormous potential for the treatment of hematologic malignancies. Despite its benefits, it is still used as a second line of therapy, mainly because of its severe side effects and patient unresponsiveness. Numerous researchers worldwide have attempted to identify effective predictive biomarkers for early prediction of treatment outcomes and adverse effects in CAR T cell therapy, albeit so far only with limited success. This review provides a comprehensive overview of the current state of predictive biomarkers. Although existing predictive metrics correlate to some extent with treatment outcomes, they fail to encapsulate the complexity of the immune system dynamics. The aim of this review is to identify six major groups of predictive biomarkers and propose their use in developing improved and efficient prediction models. These groups include changes in mitochondrial dynamics, endothelial activation, central nervous system impairment, immune system markers, extracellular vesicles, and the inhibitory tumor microenvironment. A comprehensive understanding of the multiple factors that influence therapeutic efficacy has the potential to significantly improve the course of CAR T cell therapy and patient care, thereby making this advanced immunotherapy more appealing and the course of therapy more convenient and favorable for patients.


Assuntos
Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia , Linfócitos T , Biomarcadores/metabolismo
8.
Biochem Biophys Res Commun ; 710: 149918, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38598902

RESUMO

Chimeric antigen receptor (CAR)-modified immune cells have emerged as a promising approach for cancer treatment, but single-target CAR therapy in solid tumors is limited by immune escape caused by tumor antigen heterogeneity and shedding. Natural killer group 2D (NKG2D) is an activating receptor expressed in human NK cells, and its ligands, such as MICA and MICB (MICA/B), are widely expressed in malignant cells and typically absent from healthy tissue. NKG2D plays an important role in anti-tumor immunity, recognizing tumor cells and initiating an anti-tumor response. Therefore, NKG2D-based CAR is a promising CAR candidate. Nevertheless, the shedding of MICA/B hinders the therapeutic efficacy of NKG2D-CARs. Here, we designed a novel CAR by engineering an anti-MICA/B shedding antibody 1D5 into the CAR construct. The engineered NK cells exhibited significantly enhanced cytotoxicity against various MICA/B-expressing tumor cells and were not inhibited by NKG2D antibody or NKG2D-Fc fusion protein, indicating no interference with NKG2D-MICA/B binding. Therefore, the developed 1D5-CAR could be combined with NKG2D-CAR to further improve the obstacles caused by MICA/B shedding.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Células Matadoras Naturais , Neoplasias/metabolismo , Linhagem Celular Tumoral
9.
J Exp Clin Cancer Res ; 43(1): 95, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561797

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is a highly aggressive brain tumor with a poor prognosis. Current treatment options are limited and often ineffective. CAR T cell therapy has shown success in treating hematologic malignancies, and there is growing interest in its potential application in solid tumors, including GBM. However, current CAR T therapy lacks clinical efficacy against GBM due to tumor-related resistance mechanisms and CAR T cell deficiencies. Therefore, there is a need to improve CAR T cell therapy efficacy in GBM. METHODS: We conducted large-scale CRISPR interference (CRISPRi) screens in GBM cell line U87 MG cells co-cultured with B7-H3 targeting CAR T cells to identify genetic modifiers that can enhance CAR T cell-mediated tumor killing. Flow cytometry-based tumor killing assay and CAR T cell activation assay were performed to validate screening hits. Bioinformatic analyses on bulk and single-cell RNA sequencing data and the TCGA database were employed to elucidate the mechanism underlying enhanced CAR T efficacy upon knocking down the selected screening hits in U87 MG cells. RESULTS: We established B7-H3 as a targetable antigen for CAR T therapy in GBM. Through large-scale CRISPRi screening, we discovered genetic modifiers in GBM cells, including ARPC4, PI4KA, ATP6V1A, UBA1, and NDUFV1, that regulated the efficacy of CAR T cell-mediated tumor killing. Furthermore, we discovered that TNFSF15 was upregulated in both ARPC4 and NDUFV1 knockdown GBM cells and revealed an immunostimulatory role of TNFSF15 in modulating tumor-CAR T interaction to enhance CAR T cell efficacy. CONCLUSIONS: Our study highlights the power of CRISPR-based genetic screening in investigating tumor-CAR T interaction and identifies potential druggable targets in tumor cells that confer resistance to CAR T cell killing. Furthermore, we devised targeted strategies that synergize with CAR T therapy against GBM. These findings shed light on the development of novel combinatorial strategies for effective immunotherapy of GBM and other solid tumors.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Receptores de Antígenos Quiméricos , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Imunoterapia , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral
11.
Rev Med Suisse ; 20(868): 688-693, 2024 Apr 03.
Artigo em Francês | MEDLINE | ID: mdl-38568061

RESUMO

Cellular therapy using genetically modified T lymphocytes expressing synthetic receptors, known as CAR (Chimeric Antigen Receptor), has revolutionized the treatment of certain hematologic malignancies. This success has led to exploring the same approach in the treatment of severe autoimmune diseases refractory to conventional therapies. Initial results in systemic lupus erythematosus have shown complete remissions that appear to persist over time. Consequently, there is a growing number of ongoing clinical trials. In this review, we discuss the rationale behind the use of CAR-T therapies, the targeted autoimmune diseases, and the associated risks.


La thérapie cellulaire à base de lymphocytes T génétiquement modifiés exprimant des récepteurs synthétiques ou CAR (récepteur antigénique chimérique) a révolutionné le traitement de certaines maladies hémato-oncologiques. Ce succès a conduit à l'exploration de la même approche dans le traitement de maladies auto-immunes sévères et réfractaires aux thérapies conventionnelles. Les premiers résultats obtenus dans le lupus érythémateux systémique ont montré des rémissions complètes semblant persister dans le temps. Nous assistons donc actuellement à une prolifération importante d'essais cliniques. Dans cet article, nous abordons le rationnel derrière l'utilisation des thérapies CAR-T, les maladies auto-immunes ciblées, mais aussi les risques associés.


Assuntos
Doenças Autoimunes , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva , Doenças Autoimunes/terapia , Terapia Baseada em Transplante de Células e Tecidos , 60410
12.
J Transl Med ; 22(1): 349, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38610029

RESUMO

BACKGROUND: Chimeric antigen receptor T (CAR-T) cell therapy, as an emerging anti-tumor treatment, has garnered extensive attention in the study of targeted therapy of multiple tumor-associated antigens in hepatocellular carcinoma (HCC). However, the suppressive microenvironment and individual heterogeneity results in downregulation of these antigens in certain patients' cancer cells. Therefore, optimizing CAR-T cell therapy for HCC is imperative. METHODS: In this study, we administered FGFR4-ferritin (FGFR4-HPF) nanoparticles to the alpaca and constructed a phage library of nanobodies (Nbs) derived from alpaca, following which we screened for Nbs targeting FGFR4. Then, we conducted the functional validation of Nbs. Furthermore, we developed Nb-derived CAR-T cells and evaluated their anti-tumor ability against HCC through in vitro and in vivo validation. RESULTS: Our findings demonstrated that we successfully obtained high specificity and high affinity Nbs targeting FGFR4 after screening. And the specificity of Nbs targeting FGFR4 was markedly superior to their binding to other members of the FGFR family proteins. Furthermore, the Nb-derived CAR-T cells, targeting FGFR4, exhibited significantly enhanced anti-tumor efficacy in both experiments when in vitro and in vivo. CONCLUSIONS: In summary, the results of this study suggest that the CAR-T cells derived from high specificity and high affinity Nbs, targeting FGFR4, exhibited significantly enhanced anti-tumor efficacy in vitro and in vivo. This is an exploration of FGFR4 in the field of Nb-derived CAR-T cell therapy for HCC, holding promise for enhancing safety and effectiveness in the clinical treatment of HCC in the future.


Assuntos
Camelídeos Americanos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Receptores de Antígenos Quiméricos , Anticorpos de Domínio Único , Humanos , Animais , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Microambiente Tumoral
13.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612592

RESUMO

Breast cancer (BCA) remains the leading cause of cancer-related mortality among women worldwide. This review delves into the therapeutic challenges of BCA, emphasizing the roles of interleukin-13 receptor α2 (IL-13Rα2) and erythropoietin-producing hepatocellular receptor A2 (EphA2) in tumor progression and resistance. Highlighting their overexpression in BCA, particularly in aggressive subtypes, such as Her-2-enriched and triple-negative breast cancer (TNBC), we discuss the potential of these receptors as targets for chimeric antigen receptor T-cell (CAR-T) therapies. We examine the structural and functional roles of IL-13Rα2 and EphA2, their pathological significance in BCA, and the promising therapeutic avenues their targeting presents. With an in-depth analysis of current immunotherapeutic strategies, including the limitations of existing treatments and the potential of dual antigen-targeting CAR T-cell therapies, this review aims to summarize potential future novel, more effective therapeutic interventions for BCA. Through a thorough examination of preclinical and clinical studies, it underlines the urgent need for targeted therapies in combating the high mortality rates associated with Her-2-enriched and TNBC subtypes and discusses the potential role of IL-13Rα2 and EphA2 as promising candidates for the development of CAR T-cell therapies.


Assuntos
Subunidade alfa2 de Receptor de Interleucina-13 , Receptores de Antígenos Quiméricos , Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Subunidade alfa2 de Receptor de Interleucina-13/genética , Neoplasias de Mama Triplo Negativas/terapia , Receptores da Eritropoetina , Imunoterapia Adotiva , Terapia Baseada em Transplante de Células e Tecidos
14.
Front Immunol ; 15: 1375833, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601159

RESUMO

Introduction: The clinical success of chimeric antigen receptor-modified T cells (CAR-T cells) for hematological malignancies has not been reproduced for solid tumors, partly due to the lack of cancer-type specific antigens. In this work, we used a novel combinatorial approach consisting of a versatile anti-FITC CAR-T effector cells plus an FITC-conjugated neuroblastoma (NB)-targeting linker, an FITC-conjugated monoclonal antibody (Dinutuximab) that recognizes GD2. Methods: We compared cord blood (CB), and CD45RA-enriched peripheral blood leukapheresis product (45RA) as allogeneic sources of T cells, using peripheral blood (PB) as a control to choose the best condition for anti-FITC CAR-T production. Cells were manufactured under two cytokine conditions (IL-2 versus IL-7+IL-15+IL-21) with or without CD3/CD28 stimulation. Immune phenotype, vector copy number, and genomic integrity of the final products were determined for cell characterization and quality control assessment. Functionality and antitumor capacity of CB/45RA-derived anti-FITC CAR-T cells were analyzed in co-culture with different anti-GD2-FITC labeled NB cell lines. Results: The IL-7+IL-15+IL-21 cocktail, in addition to co-stimulation signals, resulted in a favorable cell proliferation rate and maintained less differentiated immune phenotypes in both CB and 45RA T cells. Therefore, it was used for CAR-T cell manufacturing and further characterization. CB and CD45RA-derived anti-FITC CAR-T cells cultured with IL-7+IL-15+IL-21 retained a predominantly naïve phenotype compared with controls. In the presence of the NB-FITC targeting, CD4+ CB-derived anti-FITC CAR-T cells showed the highest values of co-stimulatory receptors OX40 and 4-1BB, and CD8+ CAR-T cells exhibited high levels of PD-1 and 4-1BB and low levels of TIM3 and OX40, compared with CAR-T cells form the other sources studied. CB-derived anti-FITC CAR-T cells released the highest amounts of cytokines (IFN-γ and TNF-α) into co-culture supernatants. The viability of NB target cells decreased to 30% when co-cultured with CB-derived CAR-T cells during 48h. Conclusion: CB and 45RA-derived T cells may be used as allogeneic sources of T cells to produce CAR-T cells. Moreover, ex vivo culture with IL-7+IL-15+IL-21 could favor CAR-T products with a longer persistence in the host. Our strategy may complement the current use of Dinutuximab in treating NB through its combination with a targeted CAR-T cell approach.


Assuntos
Neuroblastoma , Receptores de Antígenos Quiméricos , Humanos , Linfócitos T , Interleucina-15/metabolismo , Interleucina-7/metabolismo , Fluoresceína-5-Isotiocianato , Citocinas/metabolismo
15.
Blood Cancer J ; 14(1): 66, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622139

RESUMO

CAR T-cell therapy has transformed relapsed/refractory (r/r) B-cell precursor acute lymphoblastic leukaemia (B-ALL) management and outcomes, but following CAR T infusion, interventions are often needed. In a UK multicentre study, we retrospectively evaluated tisagenlecleucel outcomes in all eligible patients, analysing overall survival (OS) and event-free survival (EFS) with standard and stringent definitions, the latter including measurable residual disease (MRD) emergence and further anti-leukaemic therapy. Both intention-to-treat and infused cohorts were considered. We collected data on feasibility of delivery, manufacture, toxicity, cause of therapy failure and followed patients until death from any cause. Of 142 eligible patients, 125 received tisagenlecleucel, 115/125 (92%) achieved complete remission (CR/CRi). Severe cytokine release syndrome and neurotoxicity occurred in 16/123 (13%) and 10/123 (8.1%), procedural mortality was 3/126 (2.4%). The 2-year intent to treat OS and EFS were 65.2% (95%CI 57.2-74.2%) and 46.5% (95%CI 37.6-57.6%), 2-year intent to treat stringent EFS was 35.6% (95%CI 28.1-44.9%). Median OS was not reached. Sixty-two responding patients experienced CAR T failure by the stringent event definition. Post failure, 1-year OS and standard EFS were 61.2% (95%CI 49.3-75.8) and 55.3% (95%CI 43.6-70.2). Investigation of CAR T-cell therapy for B-ALL delivered on a country-wide basis, including following patients beyond therapy failure, provides clinicians with robust outcome measures. Previously, outcomes post CAR T-cell therapy failure were under-reported. Our data show that patients can be successfully salvaged in this context with good short-term survival.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores de Antígenos Quiméricos , Criança , Humanos , Adolescente , Análise de Intenção de Tratamento , Estudos Retrospectivos , Receptores de Antígenos de Linfócitos T , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Imunoterapia Adotiva/efeitos adversos , Antígenos CD19
16.
Rinsho Ketsueki ; 65(3): 180-182, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38569863

RESUMO

Relapse or progressive disease after chimeric antigen receptor T-cell (CAR-T) treatment remains a major issue for poor-risk aggressive large B-cell lymphoma. However, limited data are available on post-CAR-T use of polatuzumab vedotin. Here we describe the case of a patient with diffuse large B-cell lymphoma (DLBCL) who experienced relapse three months after CD19-directed CAR-T therapy with tisagenlecleucel. However, the relapsed lesions rapidly disappeared following treatment with polatuzumab vedotin and rituximab. Notably, long-term remission was achieved without severe cytopenia, infections or peripheral neuropathy, showing the therapeutic benefit of polatuzumab vedotin for CAR-T failure.


Assuntos
Imunoconjugados , Linfoma Difuso de Grandes Células B , Receptores de Antígenos Quiméricos , Humanos , Rituximab/uso terapêutico , Anticorpos Monoclonais , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Doença Crônica , Protocolos de Quimioterapia Combinada Antineoplásica
17.
Expert Opin Pharmacother ; 25(3): 263-279, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38588525

RESUMO

INTRODUCTION: Chimeric antigen receptor (CAR) T cells have revolutionized the treatment of multiple hematologic malignancies. Engineered cellular therapies now offer similar hope to transform the management of solid tumors and autoimmune diseases. However, toxicities can be serious and often require hospitalization. AREAS COVERED: We review the two chief toxicities of CAR T therapy, cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS), and the rarer immune effector cell-associated hemophagocytic lymphohistiocytosis-like syndrome. We discuss treatment paradigms and promising future pharmacologic strategies. Literature and therapies reviewed were identified by PubMed search, cited references therein, and review of registered trials. EXPERT OPINION: Management of CRS and ICANS has improved, aided by consensus definitions and guidelines that facilitate recognition and timely intervention. Further data will define optimal timing of tocilizumab and corticosteroids, current foundations of management. Pathophysiologic understanding has inspired off-label use of IL-1 receptor antagonism, IFNγ and IL-6 neutralizing antibodies, and janus kinase inhibitors, with data emerging from ongoing clinical trials. Further strategies to reduce toxicities include novel pharmacologic targets and safety features engineered into CAR T cells themselves. As these potentially curative therapies are used earlier in oncologic therapy and even in non-oncologic indications, effective accessible strategies to manage toxicities are critical.


Assuntos
Síndrome da Liberação de Citocina , Imunoterapia Adotiva , Linfo-Histiocitose Hemofagocítica , Síndromes Neurotóxicas , Receptores de Antígenos Quiméricos , Humanos , Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/terapia , Linfo-Histiocitose Hemofagocítica/imunologia , Linfo-Histiocitose Hemofagocítica/terapia , Linfo-Histiocitose Hemofagocítica/tratamento farmacológico , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/imunologia , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Animais
18.
J Immunother Cancer ; 12(4)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589248

RESUMO

BACKGROUND: Despite the encouraging outcome of chimeric antigen receptor T cell (CAR-T) targeting B cell maturation antigen (BCMA) in managing relapsed or refractory multiple myeloma (RRMM) patients, the therapeutic side effects and dysfunctions of CAR-T cells have limited the efficacy and clinical application of this promising approach. METHODS: In this study, we incorporated a short hairpin RNA cassette targeting PD-1 into a BCMA-CAR with an OX-40 costimulatory domain. The transduced PD-1KD BCMA CAR-T cells were evaluated for surface CAR expression, T-cell proliferation, cytotoxicity, cytokine production, and subsets when they were exposed to a single or repetitive antigen stimulation. Safety and efficacy were initially observed in a phase I clinical trial for RRMM patients. RESULTS: Compared with parental BCMA CAR-T cells, PD-1KD BCMA CAR-T cell therapy showed reduced T-cell exhaustion and increased percentage of memory T cells in vitro. Better antitumor activity in vivo was also observed in PD-1KD BCMA CAR-T group. In the phase I clinical trial of the CAR-T cell therapy for seven RRMM patients, safety and efficacy were initially observed in all seven patients, including four patients (4/7, 57.1%) with at least one extramedullary site and four patients (4/7, 57.1%) with high-risk cytogenetics. The overall response rate was 85.7% (6/7). Four patients had a stringent complete response (sCR), one patient had a CR, one patient had a partial response, and one patient had stable disease. Safety profile was also observed in these patients, with an incidence of manageable mild to moderate cytokine release syndrome and without the occurrence of neurological toxicity. CONCLUSIONS: Our study demonstrates a design concept of CAR-T cells independent of antigen specificity and provides an alternative approach for improving the efficacy of CAR-T cell therapy.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Antígeno de Maturação de Linfócitos B/genética , Antígeno de Maturação de Linfócitos B/metabolismo , Regulação para Baixo , Mieloma Múltiplo/terapia , Fenótipo , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T , Ensaios Clínicos Fase I como Assunto
19.
J Immunol Methods ; 528: 113667, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574803

RESUMO

Chimeric antigen receptor (CAR) redirected T cells are successfully employed in the combat against several hematological malignancies, however, are often compromised by low transduction rates making refinement of the CAR T cell products necessary. Here, we report a broadly applicable enrichment protocol relying on marking CAR T cells with an anti-glycine4-serine (G4S) linker antibody followed by magnetic activated cell sorting (MACS). The protocol is broadly applicable since the G4S peptide is an integral part of the vast majority of CARs as it links the VH and VL recognition domains. We demonstrate the feasibility by using the canonical second generation CARs specific for CEA and Her2, respectively, obtaining highly purified CAR T cell products in a one-step procedure without impairing cell viability. The protocol is also applicable to a dual specific CAR (tandem CAR). Except for CD39, T cell activation/exhaustion markers were not upregulated after separation. Purified CAR T cells retained their functionality with respect to antigen-specific cytokine secretion, cytotoxicity, and the capacity to proliferate and eliminate cognate tumor cells upon repetitive stimulation. Collectively, the one-step protocol for purifying CAR T cells extends the toolbox for preclinical research and specifically for clinical CAR T cell manufacturing.


Assuntos
Receptores de Antígenos Quiméricos , Linfócitos T , Citotoxicidade Imunológica , Separação Celular , Fenômenos Magnéticos , Imunoterapia Adotiva/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...